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ABSTRACT 

 

A key challenge in real-time space situational applications is the ability of an in-space sensor to detect, classify, and 

track non-cooperative resident space objects (RSOs). Crucial real time parameters required for autonomous threat 

assessment and response include relative position, orientation, and 3D velocity between the in-space sensor and the 

RSO. Conventional situational awareness sensor suites composed of visible / IR imaging and scanning LIDAR sensors 

lack the precision necessary for timely and accurate RSO assessment data and typically have high Size, Weight, and 

Power (SWaP) penalties. 

 

ASC's Global Shutter Flash LiDAR (GSFL) addresses this challenge. A compact solid-state LiDAR camera, the GSFL 

captures range and intensity in organized point cloud data format. The camera has been involved with both in-orbit 

and deep space operations, earning it a Technology Readiness Level 9 (TRL-9).  The space-qualified GSFL can be 

adapted for various distances, making it suitable for real-time space situational awareness tasks like Space Domain 

Awareness, Debris Removal, Satellite Servicing, Characterization, and Tracking of both Non-Cooperative and 

Cooperative Threats. 

 

These various applications can be accommodated through just two main camera configurations, each designed to fit 

within manageable SWaP budgets. Each configuration is customized with a unique field of view and laser divergence, 

optimized to fulfill specific objectives. The first is a short-range option (150 m to 5 km) suitable for Servicing and 

Proximity Operations. The second is a long-range option (1.3 km to 60 km) tailored for Debris Removal and 

Characterization. These configurations can also cater to intermediate and far-range imaging, primarily optimized for 

Tracking and Classification. The paper delves into the optimization of each configuration for its intended use and 

presents expected performance outcomes. 

 

1. INTRODUCTION 

 

Global Shutter Flash LiDAR (GSFL) employs a time-of-flight detector array and an optical diffuser to image an entire 

field of view in a single pulse, eliminating point cloud blurring or distortion. Further, since the data is collected as an 

array, there is no need for any post-processing to create an organized point cloud; the raw data is already organized. 

These features are vital for real-time applications. The structured and correlated nature of organized point cloud data 

is ideal for artificial intelligent / machine learning (AI/ML) processing. The GSFL has a 128x128 focal plane array 

(FPA) which is suitable for most applications, but due to the fixed pixel grid, the GSFL data can be easily fused with 

an electro-optical (EO) sensor to create even higher resolution images and to support advanced AI/ML algorithms. 

Recent research [3] focuses on noise filtering and AI/ML algorithms for target detection, classification, and tracking. 

These AI/ML algorithms can be reconfigured on-orbit for optimal performance in specific RSO scenarios. 

 

This paper explores Advanced Scientific Concept’s (ASC) Global Shutter Flash LiDAR's capability to address the 

challenge of real-time space situational awareness. By adapting the camera to various configurations and integrating 

AI/ML algorithms, it offers precise and timely data for tasks like RSO tracking, classification, and threat assessment. 

The research emphasizes optical optimization, performance expectations, and data fusion potential, showcasing flash 

LiDAR’s potential for space applications. 

  



 

2. SYSTEM PERFORMANCE CALCULATIONS 

 

The goal of the optical optimization is to design a system that is operational over a wide span of ranges to target 

without a need to reconfigure the hardware. The broader the coverage range of each configuration, the fewer hardware 

variations are needed to cater to a diverse set of space applications.  The capabilities of these system configurations 

are calculated through an optical link budget model assuming a 2-meter square target with 30% Lambertian 

reflectivity. For this study, a 60mJ, 1064 nm laser is assumed. The f-number of the receiving lens was taken to be 2.8. 

The primary optical tradeoff is in the lens field of view (FOV) and laser divergence; with increased divergence and 

FOV, a wider area is measured, but at a shorter operational range, whereas at a narrower divergence and FOV, the 

operational range is increased with a reduced field of regard. Two main camera configurations are presented: a short-

range option and a long-range option.  

 

Each configuration has a fixed field of view and four laser divergence settings. This leads to four modes of operation 

for each configuration. An actuated diffuser wheel allows for adjusting laser divergence by changing the optical 

diffuser in the path of the laser, permitting a smooth transition between modes of operation.  

 

2.1 CONFIGURATION 1: SHORT-RANGE IMAGING 

 

The Configuration 1 specifications, designated as the short-range configuration, are summarized in Table 1. It presents 

the calculated minimum and maximum operational range and the number of illuminated pixels for each operational 

mode. For these calculations, the maximum operational range is defined as the distance at which the predicted 

probability of detection for a single pixel falls below 95% [2]. The minimum range is defined as the point at which 

the sensor pixel enters saturation; at this distance, the LiDAR still reports range data, just with lower precision. The 

specified pixel count represents the quantity of pixels that sample the region illuminated by the laser within this 

divergence angle. Pixels beyond this region do not capture any returning light and do not require reading by the 

LiDAR. This configuration, optimized for Servicing, Proximity Operations, Tracking, and Classification tasks, is 

suitable for operational distances spanning from 150 meters to 5 kilometers. 

 

Table 1. Configuration 1: Short-range 

Operational 

Mode 

Lens FOV 

(deg) 

Laser Divergence 

(deg) 

Min Range 

(m) 

Max Range 

(m) 

Pixels 

1.1 15 15 150 650 128x128 

1.2 15 6 380 1270 51.2x51.2 

1.3 15 1.5 1220 2530 12.8x12.8 

1.4 15 .375 2450 5060 3.2x3.2 

The expected performance of this configuration is also presented in Fig. 1. This figure illustrates the photons per pixel 

per pulse on the sensor as a function of range to target for each operational mode. There are range values for which 

multiple operational modes are capable of proper functionality. This allows for smooth transitions between different 

operational modes and eliminates the possibility of losing a target as the system transitions between laser divergence 

settings. This means the LiDAR has no blind spots as it shifts from one operational mode to the next. 

  



 

 
Fig. 1. Configuration 1: Range vs. Photons per Pixel 

2.2 CONFIGURATION 2: LONG-RANGE IMAGING 

 

Configuration 2 is optimized for long-range imaging. Its specifications and expected performance are summarized in 

Table 2. The definitions of the values reported are the same as for the short-range configuration. This configuration is 

suitable for Debris Removal and Characterization. It can also be tailored for intermediate to long-range Tracking and 

Classification applications. Small diffuser angles and a beam expander can permit imaging ranges from 1.3 km to 60 

km, allowing for transition from intermediate to far-range imaging applications. 

 

Table 2. Configuration 2: Long-range 

Operational 

mode 

Lens FOV 

(deg) 

Laser divergence 

(deg) 

Min Range 

(km) 

Max Range 

(km) 

Pixels 

2.1 1.5 1.5 1.3 5.9 128x128 

2.2 1.5 .4 5.1  14.7 34.1x34.1 

2.3 1.5 .1 14.2  29.4 8.5x8.5 

2.4 1.5 .024 29 60 2.0x2.0 

 

Similar to Configuration 1, there is an overlap between the imaging range of each operational mode to allow for 

transition between laser divergences without causing blind spots. This is illustrated in Fig. 2 which shows the expected 

photons per pixel vs. imaging range for the sub-configurations of the long-range system. 
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Fig. 2. Configuration 2: Range vs. Photons per Pixel 

3. MECHANICAL DESIGN CONCEPT 

 

Advanced Scientific Concepts’ mechanical design concept for a configurable GSFL camera consists of two parts: an 

optical head and a processing module. The camera components are divided into two enclosures. The optical enclosure 

houses all optical components, laser, and sensors, while the processing module houses the main processing and 

electrical boards. The two enclosures are connected by radiation tolerant electrical cables of lengths that can be set by 

application. Configurability and mounting options are maximized for the system by separating the enclosures for the 

optical and processing components. 

 

 
Fig. 3. (Left) Rendered Image of Configuration 1. (Right) Rendered Image of Configuration 2. 

 

Fig. 3 illustrates the two configurations of the camera. The short-range configuration requires the 15° field of view 

lens while the long-range option requires the 1.5° lens. The entire camera system is designed to fit within a practicable 

SWaP budget. The optical enclosure has size of 9.75in x 10.25in x 6in. The processing box has a an even smaller size 

of 6.75in x 8.5in x 4.2in. Fig. 4 displays an exploded view of the short-range camera configuration and details of the 

components in each enclosure.  
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Fig. 4. Exploded view of Configuration 1: Short-range 

 

4. SOFTWARE CONFIGURABILITY USING MACHINE LEARNING ALGORITHMS: SEMANTIC 

SEGMENTATION 

 

4.1 RSO SEMANTIC SEGMENTATION 

 

Hardware configurability can optimize the camera for certain range targets, but software configurability allows the 

camera to be even further optimized for specific space applications. ASC is developing ML/AI algorithms for optimal 

performance in RSO scenarios. ASC's current research has a strong emphasis on Semantic Segmentation for RSOs 

through the application of Deep Neural Networks (DNNs). 

 

The goal for RSO DNN Semantic Segmentation is to be able to gain a better understanding of an RSO by predicting 

a meaningful class label for each data point collected by the GSFL. Semantic Segmentation is explored using simulated 

data of the ASC GSFL camera and using the Semantic Segmentation DNN known as SalsaNext [6]. SalsaNext is 

chosen as the Semantic Segmentation Neural Network as it performs well in the mean Intersection-Over-Union (mean 

IoU) metric and has a fast runtime. For numerical simulations, the data input to SalsaNext is of size 640kB, and the 

speed at which this DNN can process the data is around 20 milliseconds using the RTX 4090 GPU. With this speed, 

one can achieve a high frame rate real-time Semantic Segmentation. 

 

4.2 SIMULATING DATA 

 

To generate the necessary training data for SalsaNext, Computer Aided Design (CAD) models of Resident Space 

Objects (RSOs) are employed. NASA offers accessible CAD models through an online source, as referenced in [5]. 

The training and evaluation of SalsaNext will be conducted using a model of the TDRS-B satellite. 

 

  



 

4.2.1 PREPARING THE LABELED CAD MODEL 

 

The model is made up of a union of triangles, each triangle is described by an ordered triple of points 

 

𝑃1 =  {(𝑥𝑖
1, 𝑦𝑖

1, 𝑧𝑖
1)| 𝑖 = 1,2, … , 𝑁𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠} 

𝑃2 =  {(𝑥𝑖
2, 𝑦𝑖

2, 𝑧𝑖
2)| 𝑖 = 1,2, … , 𝑁𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠} 

𝑃3 =  {(𝑥𝑖
3, 𝑦𝑖

3, 𝑧𝑖
3)| 𝑖 = 1,2, … , 𝑁𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠} 

 

The 𝑖 − 𝑡ℎ triangle is denoted by 𝑇𝑖. For each 𝑖, it is necessary to label 𝑇𝑖 as belonging to a specific section of the 

satellite. It is chosen to segment out 6 portions of the satellite, thus there are 6 labels for the satellite, including one 

more label for the background for a total of 7. Labels for each segmented section are: 1) Background, 2) Single Access 

Antenna, 3) Space Ground Link Antenna, 4) Solar Panels, 5) Supports, 6) Body, and 7) Forward Omni Antenna. (See 

Fig. 5) 

 
Fig. 5. Segmented CAD model of the TDRS-B Satellite. 

 

Segmented sections are colored as follows: Single Access Antenna (blue), Space Ground Link Antenna (black), 4) 

Solar Panels (light blue), 5) supports (red), 6) body (teal), 7) Forward omni antenna (magenta). 

 

The labels are necessary for training SalsaNext as the neural network needs to know the answer to what it is trying to 

segment during the training phase. Lastly, for each 𝑖, the normal vector to each of the triangles is collected. These 

vectors can be computed using a cross product: 
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The order of the points (𝑃1, 𝑃2, 𝑃3) ensures that each of the normal vectors are outward pointing and also ensures 

that the correct side of each triangle is rendered. Direct utilization of the normal vectors does not take place within 

SalsaNext; rather, these vectors are employed to simulate intensity data, which then serves as input for SalsaNext. A 

more comprehensive explanation of the intensity data can be found in a subsequent section. 

  



4.2.2 SIMULATION OF POINT CLOUD DATA 

 

Utilizing a labeled CAD model entails capturing snapshots of the model, which are integrated into the training data 

for SalsaNext. This task is accomplished using a simulated GSFL camera.  The objects visible to the camera lie inside 

of the camera’s viewing frustrum. (See Fig. 6) 

 

 
Fig. 6. GSFL field of view frustrum 

 

The GSFL’s field of view lies within a frustrum shown in red. The virtual image plane shown is located at 𝑓 

millimeters from the origin 𝒪, the range is the distance from 𝒪 to 𝑅. 

 

The physical camera collects range and intensity data using rays of light (generated via a single laser pulse) that is 

collected at the camera’s 128 × 128 image plane. When these rays hit an object, the light that bounces off the object 

is collected by the camera, the time of flight of the light ray (time it takes for the emitted light to return to the camera) 

is used to determine the 128 × 128  range values. From the range values, a 3-dimensional point cloud of the object 

can be computed by using the equations: 

𝑥 =
𝑝𝑥 ∙ 𝑅

√𝑓2 + 𝑝𝑥2 + 𝑝𝑦2
 

𝑦 =
𝑝𝑦 ∙ 𝑅

√𝑓2 + 𝑝𝑥2 + 𝑝𝑦2
 

𝑧 =
𝑓 ∙ 𝑅

√𝑓2 + 𝑝𝑥2 + 𝑝𝑦2
 

 

Where 𝑓 is the camera’s focal length, 𝑅 is the range, and  

 

{(𝑝𝑥, 𝑝𝑦) | 𝑝𝑥 = −6.35, −6.25, ⋯ , 6.25, 6.35, 𝑝𝑦 = −6.35, −6.25, ⋯ , 6.25, 6.35} 

 

are 128 × 128 pixel coordinates (with pixel pitch 0.1mm) with same units as 𝑓 (millimeters). 

  

In order to simulate the physics of the camera, 128 × 128  “primary rays” (unit vectors) are generated starting at the 

GSFL camera’s pinhole and pointing in the direction of the center of each of the 16,384 pixels on the image plane. 

The simulated point cloud pixels are the intersections of the primary rays with the first triangle that it hits (if any). For 

this, the Mӧller-Trumbore ray-triangle intersection algorithm [4] is employed. The Mӧller-Trumbore algorithm returns 

the (𝑥, 𝑦, 𝑧) coordinates, and the range to these coordinates. The Mӧller-Trumbore algorithm is modified slightly so 

that the normal vectors, and the labels (the label of the triangle that the primary ray hits) are recorded. Gaussian noise 

is added to the range and the (𝑥, 𝑦, 𝑧) coordinates to simulate more realistic LiDAR noise. 



 

4.2.3 SIMULATION OF INTENSITY COUNTS 

 

The intensity counts are defined to be the number of photons incident on each pixel. This number depends on the 

range of the target, laser energy, and lens specifications.  For simulated intensity counts, this is also dependent on the 

bidirectional reflectance distribution function (BRDF). The BRDF is a function of the normal vectors, it is widely 

used in computer graphics and computer vision to simulate how light is reflected at an opaque surface.  

 

The energy reflected on a pixel, in units of photons, is simulated using 

 

𝐸𝑝 =
𝐸𝑡𝑥

𝑅2tan (
𝜃𝑙

2⁄ )
∙ 𝜌 ∙

𝜋𝐷2

4
∙ 𝐼𝐹𝑂𝑉2 ∙ 𝜂𝑜𝑝𝑡 ∙ 𝑐𝑜𝑠(𝛼). 

 

The BRDF used for simulations is the Lambertian model 𝜌 = 𝜌𝐿𝑎𝑚𝑏. The other terms in the above equation are 𝐸𝑡𝑥, 

the total transmitted laser energy (in photons), the range to the target 𝑅,  the diameter of the aperture 𝐷 in meters, the 

instantaneous field of view of the lens 𝐼𝐹𝑂𝑉 in radians, and 𝜂𝑜𝑝𝑡 is the transmission of the optical system. The angle 

𝜃𝑙 is the full angle divergence of the laser in radians and the angle 𝛼 is the incident angle between the primary rays 

and normal vectors. 

 

 

  



 

 
Fig. 7. (Top) Simulated Point cloud. (Bottom) Simulated Intensity. 

 

4.3 SALSANEXT FOR SEMANTIC SEGMENTATION 

 

4.3.1 SALSANEXT DATA PREPARATION 

 

The data is saved in two parts as input and output data. The input data for SalsaNext is a 5-channel organized point 

cloud (OPC) array which is sized as [128,128,5]. This OPC array is denoted by 𝑂. Channel-1 contains x-coordinates, 

Channel-2 contains y-coordinates, Channel-3 contains z-coordinates, Channel-4 contains Intensity counts, and 

Channel-5 contains Range values. 

 

The output data is a [128,128] array of integers ranging from 1 to 7 representing the labels. This array is denoted by 

𝐿. Values in 𝐿 denote whether the pixel (𝑖, 𝑗) is a Background pixel, Single Access Antenna pixel, Space Ground Link 

Antenna pixel, etc. 

 

To collect 2496 𝑂 and 𝐿 data points: 

1) Place the GSFL camera 150 meters from the center of mass of the object, with the camera pointing directly 

at the center of mass. 

2) Use ray tracing and the Lambertian BRDF to generate the 5-Channel array 𝑂𝑖, also generate the Label map 

𝐿𝑖 for this Organized Point Cloud. Save the data. 

3) Rotate the object in a different direction and repeat step 1) and 2) for 𝑖 = 1, ⋯ 2496. 

 

The number of images collected does play a factor in the quality of the results, however, it is also important to gather 

quality images: images of the object at various angles. The simulated camera moves around in a sphere centered at 

the object and takes pictures of the object. 

 

4.3.2 TRAINING SALSANEXT FOR RSO SEMANTIC SEGMENTATION 

 

SalsaNext attempts to learn a relationship between 𝑂𝑖 and 𝑖 via: 

 

𝐿𝑖 = 𝑁. 𝑁. (𝑂𝑖), 

 

Where 𝑁. 𝑁. is the SalsaNext DNN. The details of the hidden layers of this DNN can be found in [6]. The data is split 

into 3 portions, namely the training set, test set, and validation set, having sizes 1498, 499, and 499, respectively. The 

purpose of the training set is for SalsaNext to learn the geometry of the object. The test set is for testing the model, 

and the validation set is used to further confirm that a good model has been trained. 

 

4.3.3 SEMANTIC SEGMENTATION RESULTS AND CONCLUSION 

 



 
Fig. 8. (Top) Subsets of the Validation data with segmented parts colored differently. 

(Bottom) Predicted results from SalsaNext. 

 

The exact solution and the SalsaNext prediction are compared in Fig. 8. The bar graph and confusion matrix that 

resulted from the validation set are shown in Fig. 9 and Fig. 10 respectively. The data suggests that SalsaNext does an 

excellent job at differentiating an object and the background. It also does a reasonably decent job at segmenting out 

substantial portions of the satellite such as the solar panels and the Space Ground Link Antenna. It is difficult for the 

network to distinguish smaller parts of the antenna such as the supports and the forward omni antenna. The single 

access antenna was also difficult to segment as it was usually obscured from view. Because SalsaNext was trained 

with the camera at a specific distance to the object, this model only works well at this distance, however, one can add 

more images at various distances to the training set to generalize the results to other distances. 

 
Fig. 9. RSO Dice Accuracy of Test Set 



 
 

Fig. 10. RSO Semantic Segmentation Confusion Matrix 

5. DATA FUSION 

 

5.1 THEORY AND ADVANTAGES 

 

Global Shutter Flash LiDAR has an abundance of data fusion advantages because it provides Organized Point Cloud 

(OPC) data in real time. The ASC GSFL has a 128-pixel x 128-pixel focal plane array and uses a diffuser to illuminate 

the entire field of view. This means the camera collects a full frame of organized 3D point cloud data for every laser 

pulse. This then removes point cloud blurring and distortion, ensuring that everywhere within the field of view is 

captured in the same pulse. These features of global shutter flash LiDAR are advantageous for easy and accurate data 

fusion. 

 

As opposed to scanning LiDAR, flash LiDAR and electro-optical (EO) sensors can capture full frames of data 

simultaneously. This allows for 1-to-1 mapping between pixels in space and time. This concept is illustrated through 

the next series of figures. Fig. 9 compares the sensor data for a flash LiDAR, a scanning LiDAR [1], and a visible 

sensor. A flash LiDAR and visible sensor have similar data collection; however, the flash LiDAR has larger pixels. 

The scanning LiDAR takes points of data along a scanning pattern. In order to register the scanning LiDAR data with 

a visible sensor frame, the non-uniform scan positions need to be interpolated onto a grid to match the visible sensor 

sampling locations. This can be a computationally intensive operation. In contrast, the flash LiDAR measures range 

images in a fixed grid pattern that needs to be correlated with an EO sensor only once. 

 



 
Fig. 9. (Left) Flash LiDAR. (Middle) Scanning LiDAR. (Right) Visible Sensor. 

 

Fig. 10 is a scan pattern comparison between the 3 types of imaging. The flash LiDAR pattern is overlayed on the 

visible sensor in the first, the scanning pattern is overlayed on the visible sensor in the second, and all three are 

compared in the third plot. Each pixel on the flash LiDAR sensor can directly map to a group of pixels on the visible 

sensor. 

 

 
Fig. 10. (Left) Comparison of Flash LiDAR and Visible Sensor. (Middle) Comparison of Scanning LiDAR and 

Visible Sensor. (Right) Comparison of Flash LiDAR, Scanning LiDAR, and Visible Sensor. 

 

5.2 FLASH LIDAR FUSION WITH VISIBLE AND IR DATA 

 

ASC has begun preliminary work on data fusion between the GSFL sensor and both visible and long wave infrared 

(LWIR) data. The GSFL inherently measures point cloud data as an organized point cloud array. Each pixel in the 

FPA has a vector with corresponding data (X, Y, Z, Range, Intensity). It is therefore straightforward to fuse GSFL 

data with other types of camera data. The array can be expanded to include more information (X, Y, Z, Range, 

Intensity, R, G, B, temperature, etc.) in the vector for each pixel in each frame. 

 

To demonstrate this concept, footage of a parking lot with palm trees and bushes was taken with a GSFL, a visible 

camera, and an IR camera. Fig. 11 shows the results: colorized, organized 3D point clouds. On the left, the GSFL 3D 

point cloud data is fused with RGB data from a visible camera, while on the right the same data is fused with 

temperature data from a long wave infrared (LWIR) camera. This results in a seven-dimensional dataset that can 

convey detailed information about a three-dimensional scene. Since all of the sensors in this suite are arrayed detectors, 

the registration overhead is minimal allowing for more computational resources to be devoted to intelligent analysis 

of the measured data.  

 

 

 

 

 



 
 

 
Fig. 11. (Top Left) RGB Image. (Top Right) LWIR Image. (Bottom Left) RBG image data fused with GSFL 

organized point cloud of scene. (Bottom Right) LWIR image data fused with GSFL organized point cloud of scene. 

 

6. CONCLUSION AND FUTURE WORK 

 

ASC is continuously working to extend both software and hardware configurability. The focus of ongoing work at 

ASC is the implementation of ML/AI algorithms. Regarding Semantic Segmentation, SalsaNext undergoes training 

using densely populated point clouds, employing a designated focal length. The next step is to check if SalsaNext can 

segment objects captured using different focal lengths by inputting a rescaled version of the point cloud into SalsaNext 

(scaled so that it matches the focal length of the highly dense point cloud). ASC is also working to refine the 

mechanical design concept within practical SWaP budgets. 

 

ASC is actively engaged in ongoing research and practical implementation of data fusion involving Global Shutter 

Flash LiDAR and various other data types. The goal of data fusion research is to create systems that can communicate 

multiple different classes of useful information about a scene. Data fusion can also support and improve semantic 

segmentation and other ML/AI algorithms in future work.  
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